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MOTIVATION

» Many advancements made recently in distributed
machine learning (ML)[1, 2]

Feasibility via wireless communications is
unknown

There is a lack of real-world implementations
(only simulations and emulations)

OUR CONTRIBUTIONS [3]

= Deploying FedAvg over real networks with edge
devices

Implementing communication agnostic metrics
tooling

Measuring communication and computation
metrics over the testbed over 5G, WiFi, and
Ethernet

Combining and releasing all collected data and
developed software[4]

FEDERATED LEARNING

* Method of decentralized learning ensuring data
privacy
= Each node has its own dataset, which it uses to
train its received local model
= The server aggregates the models across the
network to create a global model
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Fig. 1: One communication round
5G-NR
= (Goals: high communication capacity, low latency,
high reliability, and massive connectivity
= Network consists of end devices, a RAN, and the
core network
= Designed as virtualized network components,
allowing for software defined networks (SDN)
|

Open-source solutions can be used to build a
low-cost testbed using COTS devices

=  OpenAirinterface (CN + RAN)

=  Aether Onramp (Core)

= SRS RAN (RAN)
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Fig. 2: Benefits of 5G-NR
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IMPLEMENTATION

* Flower federated learning framework paired with
the SqueezeNet[5] CNN

= Each node has access to Ethernet, WiFi, and 5G.

= 5G testbed is built using OAlI CN and RAN, split
between two PC'’s

= RAN utilizes USRP x310 as the gNB.

= UE’s are Raspberry Pi 6’s paired with Telit 980m
modems
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Fig. 3: Infrastructure Design

Fig. 4: Physical Testbed Infrastructure

CONVERGENCE TIME

= Defined as the overall duration of the trial required

to trigger an early stopping signal.

= \We observe Ethernet has the lowest average

round time (31.46 sec.), with 108 rounds to
converge.

= Compared to 5G, the rounds take 43.28 sec., 116

rounds to convergence.

= 5G shows an increase of 46% compared to

Ethernet.

= Performance differences can be attributed to

communication performance.

Table 1: Comparison of Ethernet, WiFi, and 5G
number of rounds, round time, and convergence time

Number of Rounds Communication Round Time Convergence Time

Trial
Ethernet WiFi 5G Ethernet WiFi 5G Ethernet  WiFi 5G
1 117 127 121 31.64 32.04 44.64 3701.88 4069.08 5401.44
2 101 112 100 3147 32.18 43.92 3178.47 3604.16 4392.00
3 121 99 106 3141 32.18 41.97 3800.61 3185.82 4448.82
4 120 93 146 31.25 32.20 43.24 3750.00 2994.60 6313.04
5 103 89 87 31.44 32.16 43.32 3238.32 2862.24 3768.84
6 88 139 89 31.44 32.19 41.72 2766.72 447441 3713.08
7 79 131 114 3143 32.28 43.80 2482.97 4228.68 4993.20
8 128 123 110 31.39 32.20 44.68 4017.92 3960.60 4914.80
9 132 122 142 31.56 32.34 43.23 4165.92 394548 6138.66
10 100 - 146 31.51 — 42.29 3151.00 — 6174.34
Avg. 108.9 115.0 116.1 31.46 32.20 43.28 3394.66 3657.00 4984.09
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CONVERGENCE TIME CONT.

= There is no observed difference in the converged
validation accuracy.

= The 5G network communication performance
greatly extends the average round time.

= Attributed mainly to the communication overhead.
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Fig. 5: Total communication round time over 10 trials
comparing Ethernet, WiFi, and 5G
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Fig. 6: Mean uplink and downlink times averaged for all
nodes on each network interface

NETWORK SCALING EFFECTS

= As number of nodes increased from 3 to 6, so did
uplink and downlink time (higher network use)

= However, total impact on convergence time was
small — (more nodes take longer to converge)

Table 2: Communication round metrics averaged
across all nodes

N UL Time DL Time Round Time Round Number %UL Time %DL Time
3 3.4130 2.3198 57.3190 105 5.9544 4.0472
4 4.6206 1.8415 48.2631 119 9.5738 3.8156
5 5.8487 1.7718 42.7461 128 13.6823 4.1450
6 10.3477 2.3089 43.3056 145 23.8946 5.3317
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Fig. 7: Worst local validation accuracy as measured by
each node on the 5G network
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