Efficient TDMA Algorithm for Energy Harvesting Wireless Sensor Networks

R. J. Hayek and A. Ammar Ohio Northern University, Ada, Ohio

Wireless Sensor Networks (WSNs)

• A set of nodes that monitor, collect, and relay data to a base station.

BS

Base Stat

- Application Examples:
 - Health Monitoring
 - Military
 - Agriculture

Limitations of WSNs

- Very small nodes, thus:
 - Limited lifetime of batteries
 - Inability to replace batteries
 - Difficult/expensive to maintain

Energy Harvesting

Energy harvesting is a possible solution.

$\left \left(\circ \circ \circ \circ \circ \circ \circ \right) \right $	
Sensor Node	

Algorithm 1: Coordinator Pseudo Code		Algorithm 2: Sensor Node Pseudo Code		
				1 b
2	switch phase do	3	case DEAD do	
3	case SYNC do	4	harvest energy;	
4	transmit SYNC packet;	5	if sufficient energy collected then	
5	set phase to ACTIVE:	6	set phase to SYNC;	
6	end	7	end	
7	case ACTIVE do	8	end	
0	raciava packats:	9	case SYNC do	
8	abasis for arrange	10	wait for a packet;	
9	check for errors;	11	if packet recieved then	
10	if overlap detected then	12	set phase to ACTIVE;	
11	halt network by broadcasting RESYNC	13	end	
	packet;	14	end	
12	wait for an acknowledgement;	15	case ACTIVE do	
13	if acknowledgement received then	16	u coordinator STNC then weit $(ID = -1)t$ seconds:	
14	set phase to SYNC:	17	$I = 1 l_s$ seconds,	
15	and	18	if other node SYNC then	
15		20	wait $(ID_{C} - ID_{R}) \mod Nt_{c}$ seconds	
16		21	end	
17	ii out-of-energy detected then	22	send packet:	
18	set phase to SYNC;	23	if still has sufficient energy then	
19	end	24	remain in ACTIVE phase;	
20	end	25	else	
21	end	26	set phase to DEAD;	
22 e	end	27	end	
		28	if recieve a RESYNC packet then	
		29	send acknowledgement;	
		30	set phase to SYNC;	
		31	end	
		32	end	
		33	end	
		34 end		

Research Problem

- Energy harvesting is a stochastic process.
- All WSN protocols require redesign to accommodate for inconsistent energy availability.
- Time Division Multiple Access (TMDA) is one of these protocols.

Research Objective

• To design an energy and latency efficient TDMA algorithm which handles the effects of clock drift.

System Model

- A single-hop network as in [1].
- Coordinator acts as a central node.
- Each node has a unique ID.
- Only nodes are energy harvesting.
- Harvest-store-spend policy is used.

Proposed Solution

The coordinator coordinates the synchronization and transmissions of the nodes. The coordinator initially syncs the network using a sync message. The coordinator monitors the network for any errors. An error is defined as: all sensor nodes are out of energy or a transmission overlap (due to clock drift). The coordinator resyncs the network if an error is detected. If a sensor node is out of energy, it can resync based on another node that previously transmitted.

Proposed Algorithm Implementation

Experimental Setup

- A node is comprised of an Arduino Uno and an XBee RF module.
- Energy harvesting is modeled as the Bernoulli process.

Results

The proposed algorithm achieves a latency of 56 ms compared to 4.6 s which is achieved by [1]. Preliminary energy calculations show significant improvements in energy consumption.

References

- Kosunalp, Selahattin. (2016). EH-TDMA: A TDMA-Based MAC Protocol for Energy-Harvesting Wireless Sensor Networks. International Journal of Computer Science and Information Security. 14. 325-328.
- 2. X. Qi, K. Wang, D. Yue, L. Shu, Y. Liu and H. Zhao, "Adaptive TDMA-based MAC protocol in energy harvesting wireless body area network for mobile health," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015, pp. 004175-004180, doi: 10.1109/IECON.2015.7392751.
- Rivero-Angeles ME. Quantum-based wireless sensor networks: A review and open questions. International Journal of Distributed Sensor Networks. 2021;17(10). doi:10.1177/15501477211052210

Quantum Science Applications

- A hybrid quantum communication system which uses an array of RF wireless sensor nodes as an intermediate to a quantum link [3].
- The RF nodes can harvest energy from an RF station.

Possible Research Areas

- How can the data sensing (transmission data) rate be optimized based on the energy harvesting rate or vice-versa?
- Assuming RF nodes are equipped with data buffers, how long should data remain in the buffer before they are removed?

Contact: Robert Hayek (<u>r-hayek@onu.edu</u>) and Dr. Ahmed Ammar (<u>a-ammar@onu.edu</u>)

U.S. Quantum Information Science School

